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Abstract

For two coupled circular microstrip disk resona-
tors in tne 1imit of small substrate thickness, a
matched asymptotic expansion approach is used to de-
rive asymptotic formulae for the resonant frequencies.
The mode coupling effects are clearly demonstrated.

Introduction

The resonance in single-element microstrip anten-
nas has been extensively studied in the past few
years2-8_  0On the other hand, less efforts have been
directed to the analysis of the coupling effects be-
tween several elements. The coupling between two cir-
cular microstrip disk resonators has been studied using
an electrostatic approachg. More recently, the reso-
nance of the two circular microstrip_structure has been
developed using a full wave analysis!s1l, and the mu-
tual coupling of rectangular microstri? antennas was
studied using a moment method approach 0,

In this paper, the matched asymptotic expansion
approach is used to asymptotically evaluate the reso-
nant frequencies of the two circular disk resonator.
This method was used in Refs. 12 and 13 to develop an
asymptotic formula for the resonant frequencies of a
circular and an annular ring microstrip antenna.

In carrying out the asymptotic expansions we will
only keep track of terms of the order of & = d/a
where d 1is the substrate thickness and a is the
radius of the two circular disks.

Formulation

Figure 1 shows the geometry of the probliem. Two
local cylindrical coordinate systems are defined by
(pj, 650 2z}, j =1, 2 referred to the centers Oj of

disks D.. The space around the open resonators is di-
vided info five regions, two interior regions, two edge
regions and an exterior region.
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Geometrical configuration of the two coupled circular
microstrip disk resonators.
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A. The Interior Region

Making use of the coordinate transformation o, =
Dss ¢j = ¢j’ and z = asZ and taking the limit of

J
§ ~ 0, we write
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where E(J) is an unknown. The edge expansion of this

interior 'solution is obtained by setting p. = a(l +
6Xj) and & ~ 0. J
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B. The Edge Region
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This region is emphasized by the following coor-
dinate transformation 0y = a(l + 5Xj), 95 = $3» and

z = asZ. From Ref. 12, and in.the Timit s - 0, we
get
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for the interjor expansion of the edge solution.
Whereas in the Timit (ij + 22)1/2 > @, we get
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for the exterior expansion of the edge solution where
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€ T e]/so and BSJ), CéJ) are unknowns to be de-
termined through the asymptotic matching.

C. The Exterior Region

In the small & 1limit, only modal fields with no
z-variations inside the substrate will be excited and
since all TE modes have z-variation, none of them will
be excited, the currents on the disks are thus expanded
in terms of the TM modes. Substituting o, = a(l +
axj), z = adZ and letting 6 > 0, we get the edge

expansion of the exterior so]ution]’”’]2
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By matching the different asymptotic solutions we ob-
tain the following eigenequations for the possible
excited modes in the coupled structure
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where €, =1 and C, =1 for the odd-symmetric modes
which aré modes that 3ary as sin(né,) on disk D

and sin(n¢2) on disk D, - C] = -1 and €, = -1 for

the odd-antisymmetric modes which are those that vary
as sin(n¢]) on D; and —sin(n¢2) on DZ' ¢, =1
and C, = -1 for the even-symmetric modes which are
varyin% as cos(n¢]) on D] and cos(n¢2) on D,.
Finally, C, = -1 and C, =1 for the even-antisym-
metric moded which vary at cos(n¢]) on Dy and
-cos(n¢2) on 02 where Jn'(Bnm) = 0.

Results and Conclusions

In this paper the two coupled-circular-disk struc-
ture is analyzed using the matched asymptotic expansion
approach. The asymptotic formula of the resonant fre-
quencies is shown to account for the coupling effects
between the two disks. It is seen that the structure
can support four different resonant modes: odd-symme-
tric (os), even-symmetric (es), odd-antisymmetric (oa), -
and even-antisymmetric (ea).

Figures 2a and 3a show the real part of the reso-
nant frequency of the four different TM., resonant
modes, whereas Figs. 2b and 3b show the 1maginary part
as a function of the thickness of the substrate d/a
for a separation of ¢ = 2.05 a between the two disks.
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Real part of the resonant frequencies of the different
modes of the TM,., as a function of d/a using the
matched asymptot]l expansion approach (MA), C = 2.05a,
€ = 2.65¢.

Figures 2a and 2b are the results of the asymptotic
formula for the resonant frequencies obtained using the
matched asymptotic expansion approach whereas Figs. 3a
and 3b are those obtained using a perturbational for-
mula’ and are included in this paper for comparison.

Comparing the results obtained from the matched
asymptotic expansion approach to those obtained from
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Imaginary part of the resonant frequencies of the TM]]
mode using (MA). Same parameters as in Fig. 2a.
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Real part of the resonant frequencies of the different
modes of the TM,,, as a function of d/a wusing the
perturbational Aﬁproach (PA), C = 2.05a, e = 2.65¢.

the perturbation approach, it is clear that the two
methods agree quite satisfactorily for values of d/a
< 0.1. On the same figures the resonant frequency of
the single disk (sd) is plotted. It is clear from
Figs. 2b or 3b that the excitation of the odd-symme-
tric TM1 mode makes the structure act as a better
antenna 1han the single disk whereas the odd-symmetric
mode makes it a better resonator.

d/a
0.0 [oX] 0.2 0.3

0.0 I I
c/a=2.05

-30

-40+

a) x 102

1
o
[}

I

Im(k

Figure 3b

Imaginary part of the resonant frequencies of the TMH
mode using (PA). Same parameters as in Fig. 3a.
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